MATH/STAT 355: Problem Set 3

Prof. Taylor Okonek

Due: March 14, 2025

Properties of Estimators

- 1. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Exponential(\lambda)$. Find a sufficient statistic for λ .
- 2. In this problem, we'll prove that

$$\left(\sqrt{\frac{n-1}{2}}\right)\frac{\Gamma(\frac{n-1}{2})}{\Gamma(\frac{n}{2})}S$$

is the UMVUE for σ , where $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ and $X_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$.

- (a) Show that $\sum_{i=1}^{n} (X_i \bar{X})^2 = \sum_{i=1}^{n} (X_i \mu)^2 n(\bar{X} \mu)^2$.
- (b) Show that (\overline{X}, S^2) is a jointly sufficient statistic for (μ, σ^2) .
- (c) Show that $\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i \mu}{\sigma}\right)^2 \left(\frac{\bar{X} \mu}{\sigma/\sqrt{n}}\right)^2$
- (d) Show that $\sum_{i=1}^{n} \left(\frac{X_{i}-\mu}{\sigma}\right)^{2} \sim \chi_{n}^{2}$, and $\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\right)^{2} \sim \chi_{1}^{2}$. Use the known relationships that if $X \sim N(0,1)$, then $X^{2} \sim \chi_{1}^{2}$, and that if, for $Y \perp W$, $Y \sim \chi_{n}^{2}$ and $W \sim \chi_{m}^{2}$, $Y + W \sim \chi_{n+m}^{2}$.
- (e) Using everything we've done in the previous steps, show (finally) that $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$.
- (f) Let $Y = \frac{(n-1)S^2}{\sigma^2}$, and note that $\sqrt{\frac{\sigma^2 Y}{n-1}} = S$. You may take without proof that (\overline{X}, S^2) is a *complete*, jointly sufficient statistic for (μ, σ^2) . Use RBLS to show that $\left(\sqrt{\frac{n-1}{2}}\right) \frac{\Gamma(\frac{n-1}{2})}{\Gamma(\frac{n}{2})} S$ is the UMVUE for σ .

Consistency

- 1. Prove Chebyshev's Corollary's
 - (a) Corollary 1: If $\hat{\theta}_n$ is an unbiased estimator for θ and $\lim_{n \to \infty} Var(\hat{\theta}_n) = 0$, then $\hat{\theta}_n$ is consistent for θ .
 - (b) Markov's Inequality, similar to Chebyshev's Inequality, states that if X is a non-negative random variable (i.e., $X \ge 0$), then $P(X \ge a) \le \frac{E(X)}{a}$ for all a > 0. Use this inequality, along with the squeeze/sandwich theorem and the relationship between mean-squared error $E\left[(\hat{\theta}_n \theta)^2\right]$, variance, and bias to prove Chebyshev's Corollary 2: If $\hat{\theta}_n$ is an *asymptotically* unbiased estimator for θ and $\lim_{n\to\infty} Var(\hat{\theta}_n) = 0$, then $\hat{\theta}_n$ is consistent for θ .
- 2. Let Y_1, \ldots, Y_n be a random sample of size *n* from a Normal pdf where $E(Y_i) = 0$ and variance $\operatorname{Var}(Y_i) = \sigma^2$. Show that $S_n^2 = \frac{1}{n} \sum_{i=1}^n Y_i^2$ is a consistent estimator for σ^2 .

Correlated Data: Part 1

Consider the following autoregressive model

$$X_n = \beta X_{n-1} + e_n, \quad n = 1, 2, 3, \dots$$

with $-1 < \beta < 1$, $X_0 = 0$, and e_1, \ldots, e_n i.i.d. with $E[e_i] = 0$ and $Var[e_i] = 1$ (Note that we have not assumed a pdf for e_i , so in this problem, this process is actually *semiparametric*). Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $\overline{e}_n = \frac{1}{n} \sum_{i=1}^n e_i$.

If you've taken Correlated Data, you've seen this before! It's like an AR1! Wow, connections!

- 1. Calculate $Var(X_n)$.
- 2. Use Chebyshev's Inequality to show that $X_n/\sqrt{n} \to 0$. (Hint: $\sum_{i=0}^{n-1} \beta^{2i}$ is a convergent geometric series).

We'll do more with this problem on the next Problem Set!