
MATH/STAT 355: Problem Set 5

Prof. Taylor Okonek

Due: April 18, 2025

Hypothesis Testing

1. Suppose we observe a random sample X1, . . . , Xn
iid∼ N(µ, σ2), where σ2 is known, and recall that

the MLE for µ is given by µ̂MLE = X. Let our null and alternative hypotheses be specified by

H0 : µ = 0, H1 : µ ̸= 0.

(a) Derive the Wald test statistic, and show that the asymptotic distribution of the Wald test

statistic is χ2
1 when H0 is true.

(b) Derive the LRT statistic, and show that the asymptotic distribution of the LRT statistic is χ2
1

when H0 is true.

(c) Derive the score test statistic, and show that the asymptotic distribution of the score test

statistic is χ2
1 when H0 is true.

*Note: These three test statistics are asymptotically equivalent for more than just normally dis-

tributed random variables, we’re just using it as one example here!

2. Suppose we have iid observations X1, . . . , Xn, and an MLE given by X, where E[Xi] = θ, and

V ar[Xi] = σ2, where σ2 is known. For this question, let σ2 = 10, n = 5, {X1, X2, X3, X4, X5} =

{3.5, 7, 8, 2.75, 6}, and assume θ > 0.

One downside to the Wald test statistic is that is non-invariant to reparameterizations. This means

that the test statistic may have a different value if we reparameterize our hypotheses, even if they

are technically testing the same thing. Demonstrate this property, by showing that the following

two sets of hypotheses lead to different Wald test statistics in this scenario:

i. H0 : θ = 1, H1 : θ ̸= 1

ii. H0 : log(θ) = 0, H1 : log(θ) ̸= 0

3. Suppose X1, . . . , Xn
iid∼ N(µ, σ2), where both µ and σ are unknown. Recall that we have previously

shown
√
n

(
X − µ

sn

)
d→ N(0, 1)

where sn is the sample standard deviation, given by sn =
√

1
n−1

∑n
i=1(Xi −X)2.

(a) Write
√
n
(
X−µ
sn

)
as

√
n−1Y√

Z
, noting what distributions Y and Z have.

(b) Let W =
√
n−1Y√

Z
. Use the result from part (a) to show that, in finite samples (i.e. no

asymptotics, no convergence, etc.), W ∼ tn−1.*
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*This is why, when you fit a linear regression model in R, you get a t-statistic instead of a z-statistic!

When we don’t assume the variance of our observations is known and instead estimate it using

the sample variance (more realistic), our test statistic follows a t-distribution rather than a normal

distribution, in finite samples.

Bayesian Statistics

1. Suppose we have a random sample Y1, . . . , Yn
iid∼ Exponential(λ) where our prior distribution for λ

is Gamma(α, β). Find the posterior distribution for λ.

2. Suppose we have a random sample X1, . . . , Xn
iid∼ Normal(µ, σ2) with known mean µ, and an

Inverse-Gamma(α, β) prior on σ2. The pdf of a random variable W ∼ Inverse-Gamma(α, β) is

given by

π(w | α, β) = βα

Γ(α)

(
1

w

)α+1

e−β/w.

Find the posterior distribution for σ2.

3. The purpose of this problem is to demonstrate the idea of sequentially updating our beliefs using a

Bayesian model. Prof. Kristin Heysse and Taylor often flip their favorite coins in their spare time

(ha!), and decide to compete to see who can get the most “heads” in 50 coin flips. Taylor gets 23

heads, and Kristin gets 38 heads, which causes Taylor to suspect that Kristin’s coin isn’t fair!

You will need to use R for this question. Just paste the few lines of code you need into your

LATEXdocument for your problem set submission. You may also use Wolfram Alpha, or something

similar, to solve a system of equations in parts (b) and (c).

(a) Derive the posterior distribution for θ, the probability of heads, using a Beta(α, β) (plugging

in actual numbers for coin flips, etc., as you go).

(b) Calculate the posterior probability that Kristin would have flipped at least 38 out of 50 heads,

given a prior belief that her coin was fair (i.e., 50% chance of heads) and that the variation in

her coin flips was only 10% (i.e., V ar(X) = 0.1, where X denotes a single coin flip). Assume

a Beta prior distribution.

(c) Calculate the posterior probability that Kristin would have flipped between 20 and 30 heads,

given a prior belief that her coin has a 76% chance of heads, and the variation in her coin flips

was again 10%.* Again, assume a Beta prior distribution.

(d) Suppose Kristin (frustrated with Taylor’s disbelief) flips her favorite coin 30 more times, and

this time observes 18 heads. Update your posterior probability that Kristin would have orig-

inally flipped at least 38 out of 50 heads, in light of this new information. (Hint: treat the

posterior probability calculated in Part b as a new prior distribution).

*Note: This is called an empirical Bayesian approach, where the prior beliefs we specify are

calculated from the data we observe. A fun fact: empirical Bayesian hierarchical models are

mathematically equivalent to frequentist mixed effects models!)
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4. This problem will walk you through one way to construct a Frequentist confidence interval in a

Bayesian framework.

Suppose we have data Y1, . . . , Yn ∼ f(y | θ) for some probability density function f . Let C(y)

denote a 1− α level confidence region for θ, such that

Pr(θ ∈ C(y)) =

∫
I{θ ∈ C}f(y | θ)dy ≥ 1− α.

Additionally, suppose we have a prior for θ, f(θ). Define the prior-posterior ratio as

R(θ) =
f(θ)

f(θ | y)
.

Show that the confidence region CR(y) = {θ | R(θ) ≤ 1/α} is a 1−α level confidence region. (Hint:

Markov’s inequality)
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