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Due: May 2, 2025

Ridge Regression

Recall all the way back from PS2 that we derived the MLE for β̂ in a linear regression framework using

matrix notation as

β̂MLE = (X⊤X)−1X⊤Y

where Y be a vector of dimension n, X be a matrix of dimension n× p, and our regression coefficients β

are a vector of unknown parameters of dimension p. We had the set-up that Y = Xβ+ϵ with multivariate

normally distributed errors, or equivalently,

Y | β ∼ MVN(Xβ, σ2In)

where σ2 > 0 is known, and the identity matrix In is of dimension n× n.

Now, suppose that we approach regression from a Bayesian framework. In particular, suppose we put a

Multivariate normal prior on β such that β ∼ MVN(0, λIp). Show that the posterior mean for β is the

Ridge regression estimator,

β̂R =

(
X⊤X+

σ2

λ
I

)−1

X⊤Y

Hint: The matrix “version” of completing the square can be written as

Y = X⊤AX+BX+C

= (X+
1

2
A−1B⊤)⊤A(X+

1

2
A−1B⊤) +C− 1

4
B⊤A−1B

Fun Fact: If you instead set the prior on β to be such that β ∼ Laplace(0, λI), you end up with the

Lasso regression estimator! Wow! Connections to Stat 253!

Jeffreys prior

Jeffreys prior is a less informative prior that has the form, for a single parameter θ,

π(θ) ∝
√
I(θ)
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where I(θ) denotes the information matrix. One of the nice properties of Jeffreys prior is that the poste-

riors derived using it are invariant to reparameterizations.

Suppose we have X1, . . . , Xn
iid∼ Bernoulli(p).

1. Derive Jeffreys prior π(p) for this data. What common distribution does the prior follow?

2. Derive the posterior distribution for p under Jeffreys prior.

3. Use the posterior distribution you derived to construct an exact, 95% confidence interval for a

binomial proportion p.*

*Note that this is sometimes called the Jeffreys interval for a binomial proportion, which has some nice

properties in terms of coverage. We’ll cover this in class when we do simulation studies!

Decision Theory

1. Show that the posterior mean is the decision rule that minimizes risk with respect to MSE loss,

L(θ̂, θ) = (θ̂ − θ)2.

2. Suppose we observe X1, . . . , Xn
iid∼ N(µ, σ2), where σ2 is known.

(a) Find the posterior distribution of µ | X1, . . . , Xn where µ ∼ N(θ, τ2). (Note: You cannot cite

Wikipedia for this question. I need to see actual math!)

(b) Determine what value for τ would give you a posterior mean equal to X, and use this to come

up with a heuristic* argument that the sample mean is admissible for µ given a specific prior.

*You can show that the sample mean is admissible without a heuristic argument, but it is much

more complex mathematically. Additionally, note that we only have a univariate normal distribution

here, not multivariate. As stated in the course notes, the sample mean is not admissible for the

mean of a multivariate normal distribution with mean of dimension 3 or more!
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